Notes: 4.4 Laws of Logarithms

Evaluate:
$\log 10=1$
$\log _{2} 2=1$
$\ln e=1$
$\log _{5} 5=1$

$$
\begin{aligned}
\log _{10} 10 & =x \\
\text { so } 10^{x} & =10^{1} \\
\mathrm{x} & =1 \\
\ln _{e} e & =x \\
\text { so } \mathrm{e}^{x} & =e^{1} \\
\mathrm{x} & =1
\end{aligned}
$$

Laws of Logarithms:
 Product: $\log _{b} m n=\log _{b} m+\log _{b} n$

Quotient: $\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
Power: $\log _{b}(m)^{p}=p \log _{b} m$ one term $=$ one term
$\log _{b} m=\log _{b} n$,
Must have a then $m=n$ one-to-one relationship to apply this law!

Example 1:

Write the given expression as a single logarithm:

$$
\begin{aligned}
& \ln 6+(2) \ln 10-\left(\frac{1}{3}\right) \ln 27 \\
& \ln 6+\ln 10^{2}-\ln 27^{\frac{1}{3}} \\
& \ln 6(100)-\ln 3 \\
& \ln \frac{600}{3}=\ln 200
\end{aligned}
$$

Important! Show your thinking process by listing all steps.

Example 2:

Clearly show all steps...apply one property at a time!

$$
\begin{array}{cc}
\left(2 \log _{6} 4\right. & \left.-\frac{1}{4}\right) \overrightarrow{\log _{6} 16}=\log _{6} x
\end{array} \begin{aligned}
& \begin{array}{l}
\text { NOTE: Th } \\
\text { will } \\
\text { never } \\
\text { out on th } \\
\text { step whe } \\
\text { have mor } \\
\text { two terr }
\end{array} \\
& \log _{6} 4^{2}-\log _{6} 16^{\frac{1}{4}}=\log _{6} x \\
& \log _{6} \frac{16}{2}=\log _{6} x \\
& 8=x \quad \begin{array}{c}
\text { Like bases, so inside } \\
\text { values are equal to each } \\
\text { other by Power of Equality }
\end{array}
\end{aligned}
$$

NOTE: The logs will never drop out on the first step when you have more than two terms!!

Show work! Include a middle step(s) when possible.
Sum
9. $\log 50+\log 200=x \quad$ Write given problem $=x$
product $\log _{10} 50(200)=x$

- Combine
$10^{x}=10,000$
- Rewrite
$10^{x}=10^{4}$
$x=4$
- Use like bases to solve

